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ABSTRACT 

In this paper we generalise a theorem of R. F. Williams about the topological 
classification of one-sided finite state stationary Markov chains. Specifically, 
we give a classification up to block-isomorphism, i.e. a topological conjugacy 
between one-sided Markov chains which preserves the Markov measures. 

w Introduction 

The theory of topological Markov chains (or subshifts of  finite type) plays an 

important role in many branches ofergodic theory and dynamical systems. We 

will be concerned with the measure-theoretic classification of the one-sided 
Markov chains. 

In [3] Williams introduced a complete invariant for topological conjugacy 
between one-sided topological Markov chains and he introduced (different) 
complete invariants for topological conjugacy between two-sided topological 
Markov chains. Unlike the situation for the two-sided case, there is a finite 
procedure for determining whether two one-sided topological Markov chains 
are topologically conjugate. 

The topological classification of two-sided topological Markov chains was 

extended by Parry and Williams (cf. [2]) to give a classification of two-sided 

Markov chains up to block-isomorphism. That is, they gave complete in- 

variants for two-sided Markov chains to be topologically conjugate by a 

conjugacy which preserves the Markov measures. The invariant introduced in 

[2] was further refined by Parry and Tuncel in [ 1 ] using matrices whose entries 
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are non-negative integral combinations of exponential functions. By working 
over the same semi-ring we will extend the topological classification of one- 
sided topological Markov chains to give a classification up to block-isomor- 
phism. That is, we will give complete invariants for one-sided Markov chains 
to be topologically conjugate by a conjugacy which preserves the Markov 
measures. With this generalisation of Williams's theorem there still remains a 
finite procedure for determining whether one-sided Markov chains are block- 
isomorphic. 

I wish to thank Professor William Parry for his guidance and encouragement 
throughout the course of this work 

w Markov chains 

Let S be a n • n irreducable 0-1 matrix. Give { 1 , . . . ,  n} the discrete 
topology and E + =  II~ {1 . . . . .  n} the product topology. Consider the sub- 
space E + c E + defined by 

E~ = { x ~ E  + : S ( x i , x i + O  = 1 for all i >_-0}. 

The shift as + is defined on E~- by ( a s + x ) ~ = x i + l  for x--(x~), as+ is a 
bounded-to-one continuous surjection and (E~-, as+) is called a o n e - s i d e d  

topo log ica l  M a r k o v  cha in  (or subsh i f t  o f  f i n i t e  t ype ) .  

Given two one-sided topological Markov chains (E~-, as+ ) and (E~, a~ ) we 
say that they are t opo log ica l  c o n j u g a t e  if there exists a homeomorphism ~ of E~ 
onto E~ such that ~as + = a~ 0. 

Let P be a stochastic matrix and denote the matrix obtained from P by 
raising every non-zero entry to the power t, t ER by pt. Let p denote the 
unique probability vector such that p P  = p .  From the stochastic matrix P we 
can define a unique (Markov) probability measure m e  on Zeo where m e  is 
treo-invariant. This is defined on the Borel subsets of Zeo and assigns 

p(io)P(io,  iO.  . . P( i , ,_  1, i,,) to the cylinder 

lio, . . . , i~ l m = { X ~ p a  : Xm --tO . . . .  ,Xm+~ =i~}. 

w Block-isomorphism 

In this paper we will give necessary and sufficient conditions for two 
one-sided Markov chains to be topologically conjugate by a homeomorphism 
that preserves the Markov measures. The proof of this theorem (Theorem 2) 
will be given in w and will closely follow the proof of Theorem 11 given by 
Williams in [3]. 
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A rectangular 0-1 matrix is called a division matrix if its rows are non-trivial 

and each column contains exactly one non-zero entry. A square 0-1 matrix is 

called a permutation matrix if its rows and columns contain exactly one non- 

zero entry. 
For matrices S and T we say that S is a reduction of T and write S < T if 

there exist non-negative integer matrices D and R,  where D is a division 

matrix, such that 

S = D R  and T = R D .  

Given a matrix S we say that So is a total reduction o f  S provided: 

(i) So < A t < �9 �9 �9 < A~ = S for some sequence of  matrices, 

(ii) So has no repeated column. 

Williams proved the following classification theorem: 

THEOREM 1 [3] (Williams). Every square matrix S over Z + has a total 

reduction So. (Z~ , as) and (Z~ , at) are topologically conjugate i f  and only i f  
their total reductions So, To are conjugate by a permutation (i.e. So = PToP- 1 
for a permutation matrix P). 

We will extend this classification up to block-isomorphism, i.e. a topological 

conjugacy that preserves Markov measures. Let Z + (exp) denote the semi-ring 

of  positive integral combinations of  exponential functions. Let P(t) and Q(t) 
be square matrices with no trivial rows or columns whose entries are in 

Z+(exp). Also suppose that P(1) and Q(1) are stochastic. We say that Q(t) is a 
reduction o f  P( t ) and write Q( t ) < P( t ) if there exist rectangular matrices R ( t ) 
and D (t) whose entries are in Z + (exp) such that R ( 1 ) and D ( 1 ) are stochastic, 
D(0) is a division matrix and 

P(t) = R(t)D(t),  Q(t) = D(t)R(t).  

If there exist matrices Po(t) . . . . .  P,(t) such that Po(t) = P(t), P.(t) = Q(t) 
and for each 1 _-<i < n - 1 either Pi( t )< Pi+ l ( t )or  P~+ ~(t)< P~(t), we say that 

P(t) and Q(t) are related. Given a matrix P(t), a total reduction is a matrix 

Po( t ) satisfying: 

(i) Po(t) < P,(t) < . . .  < P,(t) = P(t) for some sequence of  matrices, 

(ii) Po(t) has no column which is some exponential c t times another column. 

We will prove: 

THEOREM 2. Every stochastic matrix P has a total reduction Po(t), 
\ 

(Y~ , apo , mp) and (Z~o, croo, mo) are block-isomorphic i f  and only i f  the total 
reductions Po(t) and Qo(t) are conjugate by a permutation (Po(t) = S-'Qo(t)S). 
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w Proof of Theorem 2 

To prove Theorem 2 we require a series of  lemmas. 

Given an n • n matrix S the state parti t ion as o f Z  + is the parti t ion into sets 

l i I ~ for 1 =< i =< n where 

I i l ~  {xEY.~ : x 0 =  i) .  

Suppose that a and q are partit ions of  Z~-, then we write a ~ q if every 

element of  the parti t ion a is a union of  elements of  7. 

For n >_- 0 let 

a v  ffslOtv �9 �9 �9 V6sna = {Aon �9 . . n A , : A i E a s i a ,  0 < i < n} 

and denote this parti t ion by a". We shall need the following lemma: 

L~MMA 1 [2]. Suppose that P is an irreducible stochastic matrix, let p and 
be partitions of (Z~,  aeo, me) into closed-open sets and suppose a <= q <= a 1. 
Define two stochastic matrices indexed by a X q: 

me(K N E) me(K n a~ I E) 
[a, 17 I(K, E)  = and l a, q [o,o(K, E)  = 

me(K) me(K) 

for (K, E ) ~ a  X q; then 

l a ,~ / l lq ,  alo, o = l a ,  alo,0 and Iq, al~,ola, q l = l q ,  r/lo,o. 

Note  that la, r/I is a division matrix and that the products  la, q I ' lq,  a['~,o 
and [ r/, a 1~,01 a, r/[' are 0-1 matrices when t = 0. 

LEMMn 2. l f  P and Q are stochastic matrices and r : Z~ ~ Z~o is a block- 
isomorphism, then pz and Qt are related. 

PROOF. Let 1/=O-laQo and choose n such that q =<a~o and a:<=rl ~. 
Consider the following sequence of  partitions: 

a : v  ~"-l ~ 7" ~ (a : v  7 "-1 )1, 

apv  q.-2 <= ~pv  q , - i  < (aeo v q,-2) 1, 
, o o  o o Q  ~ 1 7 6  

a : v  q ~ a : v  q~ ~ ( a : v  q)l. 

By raising each of  the matrices defined in Lemma 1 to the power  t, we have 

that Iq", q"l~,o and l a : v q ,  a:vq[~,o are related. Similarly la~o, " t a~[o: and 
l a : v  q, a : v  q Igo are related. No w laeo, a:l~: = p t a n d  I q, ~/Igo-- Q'. These 
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matrices are clearly related to l a~0, a~0 Its,0 and It/n, r/n It,:, respectively. Hence 

pt and Qt are related. 

We now show how total reductions can always be found. 

LEMMA 3. Let P(t) be a square matrix with no trivial rows or columns such 
that P(1) is stochastic and whose entries are in Z § (exp). Then we can f ind a total 

reduction Po(t) o f  P(t). 

PROOF. Let P(t) be a n • n matrix and suppose columnj  = c t • column i. 

Let the integer k vary over the set { 1, . . . ,  i , . . . , j  - 1,j  + 1, . . . ,  n }. Define a 

n • (n - 1) matrix R(t)  where column k of  R(t)  equals column k of  P(t) if 

k 4: i. When k = i let column k of R (t) equal ( 1 + c) • column i. Now let D'  be 

the (n - 1) X n division matrix that partitions the standard row vectors that 

generate Z n, { Yl . . . . .  Yn } into n - 1 sets { UI . . . . .  Un - 1} where U k = ( Yk } for 

k 4: i and Uk = { Yi, Yj) for k = i. (D#~ = 1 ~Ym E Ut.) We now construct D(t) 
by altering the unique non-zero entry of  column i in D' to 1/(1 + c) t and 

changing the unique non-zero entry o f co lumnj  of D'  to ct/(1 + c) t. Then D(1) 

and R(1) are stochastic matrices with P( t )=  R(t)D(t).  We now repeat this 

procedure if necessary on D(t)R(t). Since the size of  our matrices are being 

reduced every time this procedure is followed, we will eventually obtain a total 

reduction of P(t). 
Given two reductions of some matrix we can always find a matrix which is a 

reduction of  both of  them: 

LEMMA 4. Suppose B(t) and C(t) are reductions o f  P(t), then there exists 
A(t) which is a reduction o f  both B(t) and C(t). 

PROOF. Let P ( t ) be n • n, B ( t ) m • m and C ( t ) r • r. Let qbe the smallest 

integer such that the columns of P(t) can be partitioned into two sets WI and 

WE of q and n -- q columns respectively, where each column of W2 is some 

exponential (c t, for c > 0) times one of  the columns in WI. Express P(t) as a 

product R~(t)D,(t) where R,(t) is n • q and Dl(t) is q • n by the method used 

in Lemma 4 and put A(t) = Dl(t)Rl(t). 
Since B(t) is a reduction of  P(t) there are matrices D2(t) and R2(t) such that 

e(t)  = R2(t)D2(t) and B(t) = D2(t)R2(t). 

We claim that there exists a q • m matrix D3(t) such that D3(0) is division, 

D3(1 ) is stochastic and Dl(t) = D3(t)D2(t). Let the standard row vectors which 

generate Z n, Z q and Z m be {X I . . . . .  Xn}, {Yl . . . . .  yq} and { z l , . . . ,  Zm} respec- 

tively. The division matrix Dl(O) gives a partition {U~, . . . ,  Ur of  
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{x~ . . . . .  xn} and similarly D2(0 ) gives a partition {V~ . . . . .  Vm} of  

(Xl, �9 �9 �9 xn }. Now for each 1 < j  =< m the columns of  P(t) corresponding to all 

the Xk'S in Vj are an exponential times each other. But { UI . . . . .  Uq } is the 

smallest partitioning of  the Xk'S into sets whose corresponding columns are an 

exponential times each other. Thus { V~ . . . .  , Vm } refines { U~ . . . .  , Uq }. Let D3 
be the division matrix that partitions {z~ . . . . .  zm} into sets {Y~, . . . ,  Yq} 

where Zj ~ Yi if Vj c Ui; then D~(0) -- D3D2(0). IfD3(i,j) -- 1 and Xk E Vj C Ui, 
then D~(t)(i, k) ~ 0, DE(t)(j, k) ~ 0 and we can define D3(t) by 

D~(t)(i, k) 
D3(t)(i,j) = 

D2(t)(j, k) 

We must check that this definition is unambiguous so suppose xk, x~ ~ Vj c U~. 

Choose s such that P(t)(s, k) ~ O; as P(t)(s, k) = Rt(t)(s, i)Dl(t)(i, k) we have 

that R~(t)(s, i) ~ O. Now 

Hence 

Dl(t)(i, k)D2(t)(j, l) = 
P(t)(s, k)D2(t)(j, 1) 

R,(t)(s, i) 

R3(t)(s, j)D2(t)(j, k)D2(t)(j, l) 

Rl(t)(s, l) 

e(t)(s, l)D2(t)(j, k) 

Rl(t)(s, i) 

=D,(t)(i ,  l)D2(t)(j, k). 

D~(t)(i, k) Dt(t)(i, l) 

O2(t)(j, k) D2(t)(j, l) 

and D3(t) is defined unambiguously. 

Clearly D~(t) = D3(t)D2(t) and D3(1) is stochastic since Dl(t) = D3(t)D2(t). 
Define R3(t) = D2(t)Rl(t) and A (t) = D3(t)R3(t), then 

D2(t)R2(t)O2(t) = O2(t)Rl(t)Dl(t) 

= D2(t)Rl(t)D3(t)D2(t). 

Since each column of D2(t) contains only one non-zero entry we conclude that 

D2(t)R2(t) = D2(t)Rm(t)D3(t). Hence A(t) < B(t), similarly A (t) < C(t) and the 

lemma is proved. 
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We may now prove Theorem 2: 

PROOF OF THEOREM 2. By Lemma 3 total reductions Po(t) and Qo(t) can 
always be found. If Po(t)= S-~Qo(t)S for some permutation matrix S, then 
Po(t) < Qo(t) and so pt and Qt are related. Suppose that for matrices P~(t) and 

PE(t) we have that P~(t) < P2(t) and 

P2(t) = R(t)D(t) and P,(t) = D(t)R(t). 

The division matrix D(0) defines a topological conjugacy between the one- 
sided subshifts of finite type (~.~0, trpo) and (Y.~,0, tre o) (cf. [3]). This topological 
conjugacy will preserve the measures given by PI(1) and P2(1) on E~0 and Y.~0 
respectively (cf. [ l]). By composing all the block-isomorphisms given by the 
division matrix, we conclude that there exists a block-isomorphism from Zp 
onto Z~0. 

Conversely, let 0 be a block isomorphism from Zp onto ~o.  Then by 
Lemma 2 and Lemma 3, Po(t) and Qo(t) are related by a string of matrices 
Po(t), Pl(t) . . . .  , Pn(t) = Qo(t). These can be thought of as vertices of a polygo- 
nal line (see Fig. 1) with a side joining Pi(t) to Pi+~(t) up to the right if 
P~(t) < Pi + 1(0 and down to the right if P~ + ~(t) < P~(t). If Pi(t) and P~ + 1(t) are 
conjugate by a permutation matrix, then we draw a horizontal line. 

/'~+~(t) 

Pi(t) ~ Pi+2(t) 
x / 

%pd 

P~+ i(t) 

Fig. 1. 

Using Lemma 4, any peak vertex of this graph can be lowered to obtain a 
lowest graph connecting Po(t) to Pn(t)= Qo(t). This lowest graph cannot 
contain a local minima for then there would be a strictly smaller total 

reduction of P0(t) and Q0(t). Hence P0(t) and Q0(t) are related by a permutation 

matrix. 
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